На предыдущем уроке мы научились измерять мультиметром напряжение, ток и сопротивление, а также собрали первую схему на макетной плате. Сегодня мы расширим схему, добавив еще несколько резисторов. Как это повлияет на ток и напряжение в схеме? Давайте проверим!
Мы начнем с создания макета в соответствии со следующей схемой:
B1 – это по-прежнему наша кассета из 4 пальчиковых батареек типа АА, каждая номиналом 1,5 вольт (далее для простоты будем говорить как об одной батареи)
- R1 – резистор 22кОм (полоски — красный/красный/оранжевый/золотой)
- R2 – резистор 10кОм (полоски — коричневый/черный/оранжевый/золотистый)
- R3 – резистор 2,2кОм (полоски — красный/красный/красный/золотой)
Определить сопротивления резисторов по цветным полоскам можно здесь.
Обратите внимание, что каждый резистор обозначается одним и тем же символом (R), изменяется только стоящая за ним цифра. А как обозначались бы резисторы на схеме, если все 3 имели одинаковое сопротивление? Так же, как и на схеме выше – каждый элемент будет иметь свой собственный номер!
Правило чтения электронных схем – каждый элемент одного и того же типа имеет один и тот же буквенный символ, отличающийся только порядковым номером.
Давайте вернемся к нашей схеме. Если вы уже подобрали резисторы, то давайте построим макет на макетной плате. Наш макет выглядит так:
Давайте, для начала, выясним, какое напряжение для нашей схемы обеспечивает батарея. Возьмите мультиметр, подготовленный для измерения напряжения, с регулятором, установленным на 20В (почему такой диапазон, как подготовить мультиметр и как им пользоваться описано в уроке №1). Приложим оба щупа мультиметра к выводам нашей батареи B1:
Наша батарея выдает напряжение 6,02В. Теперь измерим фактическое сопротивление всех трех резисторов (R1, R2, R3). Мы получили следующие результаты: 21,9кОм, 10кОм и 2,23кОм соответственно.
Какова будет сила тока в цепи? Для начала, попробуем посчитать:
I = U / R
Символ U означает напряжение, которое обеспечивает наша батарея, а R — это сумма сопротивлений всех электронных компонентов, то есть резисторов, и поэтому:
I = U / (R1 + R2 + R3)
I = 6,02В / (21,9кОм + 10кОм + 2,23кОм)
I = 6,02В / 34,13кОм
I = 6,02В / 34130 Ом
I = 0,000176А = 176мкA
Теперь измерим мультиметром фактический ток:
Мы сделали измерение, приложив красный щуп мультиметра к красному проводу батареи, а черный щуп к выводу первого резистора.
Как видно на фото, фактический ток цепи равен току, который мы рассчитали ранее: 176мкA.
Можно попробовать измерить ток, подключив мультиметр в другое место схемы, например, между резисторами или между резистором R3 и черным проводом батареи – уверяем, что вы получите один и тот же результат. Сила тока в нашей схеме будет одинакова.
Вы помните наше предыдущее сравнение электрического тока с потоком воды? Наш „поток воды” никуда не девается, вытекает из одного вывода батареи, последовательно проходит через все резисторы и достигает второго вывода батареи. Поэтому сила тока (поток воды) в схеме одинакова.
Давайте проследим, что же происходит с напряжением в нашей схеме. Мы знаем, что батарея выдает нам напряжение 6,02В, а сила тока всей цепи составляет 176мкA. Можно ли вычислить какое падение напряжения происходит на каждом из резисторов? Конечно! Поможет нам в этом закон Ома для участка цепи:
I = U / R
- падение напряжения на резисторе R1(22кОм) равно:
U = I x R
U = 176мкA x 21,9кОм
U = 0,000176А x 21900 Ом
U = 3,85В
- падение напряжения на резисторе R2 (10кОм) равно:
U = I x R
U = 176мкА x 10кОм
U = 0,000176А x 10000 Ом
U = 1,76В
- падение напряжения на резисторе R2 (2,2кОм) равно:
U = I x R
U = 176мкA x 2,23кОм
U = 0,000176А x 2230 Ом
U = 0,39В
Из приведенных расчетов можно заметить, что чем больше сопротивление резистора, тем выше на нем падение напряжения.
Теперь посмотрим, какое напряжение мы получим, прикладывая щуп мультиметра к каждому из резисторов:
На каждом резисторе падение напряжения составило:
UR1 = 3,83В
UR2 = 1,75В
UR3 = 0,39В
UR1 + UR2 + UR3 = 5,97В
UB1 = 6,02В
Сумма падений напряжений на отдельных резисторах почти равна напряжению батареи. Теоретически напряжение UB1 и UR1 + UR2+ UR3 должны быть равны, но на практике, это не всегда бывает так. Почему? В данном случае разница возникает, вероятно, из-за неточности измерения мультиметра.
Помните также, что не только сами резисторы оказывают сопротивление току. Сопротивление (хотя и небольшое) также есть и у проводов, через которые протекает ток.
Так или иначе, мы экспериментально пришли ко второму правилу Кирхгофа, в котором говорится о том, что сумма падения напряжения на всех участках цепи равна источнику питания этой цепи.