Главная » Справочник » Суперконденсатор – описание, расчет заряда, схема источника питания

Суперконденсатор – описание, расчет заряда, схема источника питания

Суперконденсаторы (ионисторы) — это больше, чем просто конденсаторы большой емкости. Они работают по тому же принципу — накопление заряда в электрическом поле, однако при их изготовлении используются немного другие технологии.

У суперконденсаторов металлические электроды покрыты активированным углем и погружены в электролит. Благодаря своей пористости они могут накапливать гораздо больше заряда. В отличие от обычных конденсаторов, заряд накапливается не только на самом электроде, но и на его угольном покрытии. Вот почему их еще часто называют двухслойными конденсаторами (EDLC).

Более того, толщина изолятора здесь также намного меньше чем в обычных конденсаторах и измеряется в нанометрах. В результате этого можно запасти гораздо больше заряда — вплоть до сотни фарад! К сожалению, это происходит за счет допустимого напряжения.

Суперконденсаторы, доступные на рынке, обычно имеют номинальное напряжение 2,7В (одинарные) и 5,4В (сдвоенные). Конечно, это можно «исправить» и получить более высокое напряжение, подключив последовательно несколько суперконденсаторов, но при этом пожертвовав емкостью.

Немного теории

О суперконденсаторах нужно знать несколько вещей. Наиболее важные из них касаются зарядки, разрядки и подключения: последовательного и параллельного.

Зарядка суперконденсатора

Начнем с постоянной времени RC-цепи:

t=R*C

За время t суперконденсатор емкостью С, подключенный последовательно с резистором  R, зарядится примерно до 2/3 (точнее до 63,2%) напряжения питания. За время 5t суперконденсатор зарядится до значения очень близкое к напряжению питания (99,3%).

Эти интервалы обусловлены тем, что процесс зарядки конденсатора является не линейной функцией (экспоненциальной). Для определения его параметров можно использовать следующие формулы:

В приведенных выше формулах:

  • Q: мгновенный заряд, в момент t [Кл];
  • C: емкость конденсатора [Ф];
  • I: мгновенный зарядный ток [A];
  • V0: напряжение зарядки [В];
  • V: мгновенное напряжение на суперконденсаторе [В];
  • R: сопротивление, подключенное последовательно с суперконденсатором [Ом];
  • t: время [сек].

Обратите внимание, что:

  1. По мере зарядки заряд на пластинах суперконденсатора растет, как и его напряжение.
  2. По мере продолжения зарядки ток заряда уменьшается: от V0\R до почти нуля.
  3. Время зарядки суперконденсатора зависит от его емкости C и сопротивления R.

Практический пример: зарядка суперконденсатора емкостью 1Ф через резистор сопротивлением 50 Ом от источника напряжения 5 В (зафиксированного на осциллографе):

На рисунке видно, что суперконденсатор достиг заряда 63,2% (3,16 В) примерно за 47 секунд. Это согласуется (более менее) с постоянной времени:

t = 50 Ом * 1 Ф = 50 сек

Схема зарядки суперконденсатора

Схема зарядки суперконденсатора выглядит следующим образом:

Схема зарядки суперконденсатора

В данном случае:

t = R * C = 10 Ом * 1 Ф = 10 сек

суперконденсатор будет заряжен до ~ 3,3В через 10 секунд — и до 5 В  примерно через 5 секунд.

зарядный ток будет равен:

I = U \ R = 5 В \ 10 Ом = 0,5 A

В чем проблема? В выделяемой мощности на резисторе:

P = U \  I = U * (U \ R) = 5 В * (5 В \ 10 Ом) = 2,5 Вт

Из этого следует, что на резисторе можно выделиться до 2,5 Вт мощности. Резисторы, которые мы обычно используем, имеют не более 0,25 Вт мощности, что в десять раз меньше. Установленный в такую ​​схему резистор мощностью 0,25 Вт просто перегорит.

Выход из данной ситуации — распределение напряжения и тока следующим образом:

распределение напряжения и тока

Конечное сопротивление такой схемы по-прежнему составляет 10 Ом:

Rz = R1 * R2 \ (R1 + R2) = (10 Ом + 10 Ом) * (10 Ом + 10 Ом) \ ((10 Ом + 10 Ом) + (10 Ом + 10 Ом)) = 400 Ом / 40 Ом = 10 Ом

В данном случае ток в обеих ветвях будет по 250 мА. Напряжение на каждом из резисторов:

Ur = I \ R = 0,25 A \  10  Ом = 2,5 В

отсюда мощность на каждом резисторе:

P = U \  I = 2,5 В \ 0,25 A = 0,625 Вт

…таким образом, можно использовать резисторы мощностью 1 Вт.

Практичный источник питания с суперконденсатором

В практических решениях широко используются суперконденсаторы, например, для питания часов реального времени.

В подобных схемах необходимо использовать диод, который защитит цепь зарядки от «обратного тока» от самого суперконденсатора. Схема может выглядеть так:

Напряжение питания  может поступать, например, от Ардуино. Диод D1 защищает источник питания от «смещения» тока от суперконденсатора – чтобы на выход стабилизатора не поступало напряжение с конденсатора.

Однако этот диод также влияет на напряжение зарядки суперконденсатора, которое в такой схеме ниже на величину падение напряжения на диоде. В зависимости от типа диода оно может составлять 0,6..0,8В.

Катод диода через резистор подключен к суперконденсатору C1. Сопротивление резистора определяется, как и выше, учитывая постоянную времени.

Примеры суперконденсаторов

При выборе суперконденсатора учитывайте:

  • Емкость, измеряемая в фарадах — чем больше емкость, тем больше заряда может накапливать суперконденсатор и, как следствие, дольше обеспечивать питание вашей системы,
  • Номинальное напряжение, измеряемое в вольтах — максимальное напряжение, которое конденсатор может обеспечить на выводах.

Некоторые примеры (фото) суперконденсаторов:

Емкость 1Ф, максимальное напряжение 5,5В (сдвоенный; на картинке слева — справа 4Ф):

Емкость 1Ф, максимальное напряжение 5,5В ФОТО

Максимальное напряжение 5,5 В, емкость 4Ф, высота 5 мм, диаметр 25 мм (сдвоенный):

Максимальное напряжение 5,5 В, емкость 4Ф, ФОТО

Максимальное напряжение 2,7 В, емкость: 100Ф (!), Высота и диаметр более 5 см:

Максимальное напряжение 2,7 В, емкость: 100Ф ФОТО

Некоторые комментарии…

  • Каждый суперконденсатор имеет определенное максимальное напряжение — например, 2,7 или 5,5 В. Подача большего напряжения может привести к взрыву суперконденсатора.
  • Суперконденсаторы поляризованы: не перепутайте, какая ножка «-», а какая — «+»; обратная полярность может привести к взрыву суперконденсатора,
  • Суперонденсаторы могут выдерживать большое количество циклов заряда и разряда. В этом отношении они во много раз более устойчивы, чем, например, NiMH или LiPo батареи.
  • Если у вашего конденсатора слишком низкое напряжение или слишком малая емкость — вы можете подключать их последовательно или параллельно.



Добавить комментарий


.