Фототранзистор. Принцип работы и схема включения

Фототранзистор представляет собой твердотельное полупроводниковое устройство с внутренним усилением, которое используются для обеспечения аналоговых или цифровых сигналов. Фототранзисторы используются практически во всех электронных устройствах, функционирование которых, так или иначе, зависит от света, например, детекторы дыма, лазерные радары, системы дистанционного управления.

Фототранзисторы способны реагировать не только на обычное освещение, но и на инфракрасное и ультрафиолетовое излучение. Фототранзисторы более чувствительные и создают больший ток по сравнению с фотодиодами.

Конструкция фототранзистора

Как известно, самым распространенным видом транзистора является биполярный транзистор. Фототранзисторы, как правило, биполярные устройства NPN типа.

фототранзистор фото

Несмотря на то, что и обычные биполярные транзисторы достаточно чувствительные к свету, фототранзисторы дополнительно оптимизированы для более четкой работы с источником света. Они имеют большую зону базы и коллектора по сравнению с обычными транзисторами. Как правило, они имеют непрозрачный темный корпус с прозрачным окошком для света.

Большинство фототранзисторов производят из полупроводникового монокристалла (кремний, германий), хотя встречаются фототранзисторы, построенные и на основе сложных типов полупроводниковых материалов, например, арсенид галлия.

Принцип работы фототранзистора

Обычный транзистор состоит из коллектора, эмиттера и базы. В работе фототранзистора, как правило, вывод базы остается отключенным, так как свет генерирует электрический сигнал, позволяющий току протекать через фототранзистор.

При отключенной базе, коллекторный переход фототранзистора смещен в обратном, а эмиттерный переход — в прямом направлении. Фототранзистор остается неактивным до тех пор, пока свет не попадает на базу. Свет активирует фототранзистор, образуя электроны и дырки проводимости — носители заряда, в результате чего через коллектор — эмиттер протекает электрический ток.

Усиление фототранзистора

Диапазон работы фототранзистора напрямую зависит от интенсивности его освещения, поскольку от этого зависит положительный потенциал базы.

Базовый ток от падающих фотонов усиливается с коэффициентом усиления транзистора, который варьируется от нескольких сотен до нескольких тысяч единиц. Следует отметить, что фототранзистор с коэффициентом усиления от 50 до 100 более чувствителен, чем фотодиод.

Дополнительное усиление сигнала может быть обеспечено с помощью фототранзистора Дарлингтона. Фототранзистор Дарлингтона представляет собой фототранзистор, выход которого (эмиттер) соединен с базой второго биполярного транзистора. Схематическое изображение фототранзистора Дарлингтона:

фототранзистор дарлингтона

Это позволяет обеспечить высокую чувствительность при низких уровнях освещения, так как это дает фактическое усиление равное усилению двумя транзисторами. Два каскада усиления может образовать коэффициент усиления до 100 000 . Однако необходимо учесть, что фототранзистор Дарлингтона имеет более медленную реакцию, чем обычный фототранзистор.

Основные схемы включения фототранзистора

Схема усилителя с общим эмиттером

В данном случае формируется выходной сигнал, который переходит из высокого состояния в низкое в момент освещения фототранзистора.

подключение фототранзистора с общим эммитером

Данная схема получается путем подключения резистора между источником питания и коллектором фототранзистора. Выходное напряжение снимается с коллектора.

Схема усилителя с общим коллектором

Усилитель с общим коллектором формирует выходной сигнал, который при освещении фототранзистора, переходит из низкого состояния в высокое состояние.

фототранхзистор схема с общим коллектором

Схема создается путем подключения резистора между эмиттером и минусом источника питания (земля). Выходной сигнал снимается с эмиттера.

В обоих случаях фототранзистор может быть использован в двух режимах, в активном режиме и в режиме переключения.

  • Работа в активном режиме означает, что фототранзистор генерирует выходной сигнал пропорциональный степени его освещенности. Когда количество света превышает определенный уровень, фототранзистор насыщается, и выходной сигнал уже не будет увеличиваться, даже при дальнейшем увеличении освещения. Этот режим работы фототранзистора полезен в устройствах, где необходимо различить для сравнения два порога освещенности.
  • Работа в режиме переключения означает, что фототранзистор в ответ на его освещение будет либо «выключен» (отсечка), либо включен (насыщенные). Этот режим полезен, когда необходимо получить цифровой выходной сигнал.

Изменяя сопротивление резистора нагрузки в цепи усилителя можно выбрать один из двух режимов работы. Необходимое значение резистора может быть определено с помощью следующих уравнений:

  • Активный режим: Vcc> R х I
  • Переключатель режима: Vcc <R х I 

Для работы в режиме переключения обычно используют резистор сопротивлением 5 кОм или выше. Выходное напряжение высокого уровня (лог.1) в режиме переключения будет равно напряжению питания. Выход низкого уровня (лог.0) должно быть не менее 0,8 вольт.

редактор

Добавить комментарий

Ваш электронный адрес не будет опубликован.

*