Двухполупериодный мостовой выпрямитель. Принцип действия, схема, расчет

Существует еще одна, более популярная конструкция двухполупериодного выпрямителя, построенная на основе конфигурации с четырьмя диодами. Такая конструкция известна как двухполупериодный мостовой выпрямитель или просто мостовой выпрямитель.

Преимущество этого типа выпрямителя по сравнению с версией выпрямителя с центральным отводом заключается в том, что для него не требуется сетевой трансформатор с центральным отводом во вторичной обмотке, что резко снижает его размер и стоимость.

Также эта конструкция использует полностью все вторичное напряжение в качестве входного. Используя тот же трансформатор, мы получаем вдвое больше пикового напряжения и вдвое больше постоянного напряжения с мостовым выпрямителем, чем с двухполупериодным выпрямителем с центральным отводом. Именно поэтому мостовые выпрямители используются гораздо чаще, чем двухполупериодные со средней точкой.

Двухполупериодный мостовой выпрямитель

Чтобы выпрямить оба полупериода синусоидальной волны, как мы уже говорили ранее, в мостовом выпрямителе используются четыре диода, соединенных вместе в конфигурации «моста». Вторичная обмотка трансформатора подключена с одной стороны диодного моста, а нагрузка — с другой.

На следующем рисунке показана схема мостового выпрямителя.

Во время положительного полупериода переменного напряжения диоды D1 и D2 смещены в прямом направлении, в то время как диоды D3 и D4 смещены в обратном направлении. Это создает положительное напряжение на нагрузочном резисторе (обратите внимание на плюс-минус полярности на нагрузочном резисторе).

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь диоды D3 и D4 смещены в прямом направлении, а диоды D1 и D2 — в обратном. Это также создает положительное напряжение на нагрузочном резисторе, как и раньше.

Обратите внимание, что независимо от полярности напряжения на входе, полярность на нагрузке постоянная, а ток в нагрузке течет в одном направлении. Таким образом, схема преобразует входное переменное напряжение в пульсирующее постоянное напряжение.

Если вам трудно запомнить правильное расположение диодов в схеме мостового выпрямителя, вы можете обратиться к альтернативному представлению схемы. Это точно такая же схема, за исключением того, что все диоды расположены горизонтально и направлены в одном направлении.

Значение постоянного напряжение выходного сигнала

Здесь формула для расчета среднего значения напряжения такая же, как и для двухполупериодного выпрямителя со средней точкой:

Это уравнение говорит нам, что значение постоянного напряжения составляет около 63,6 процента от пикового значения. Например, если пиковое переменное напряжение составляет 10 В, то постоянное напряжение будет 6,36 В.

Когда вы измеряете напряжение на выходе мостового выпрямителя с помощью вольтметра, показание будет равно среднему значению.

Аппроксимация второго порядка

В действительности мы не получаем идеальное  напряжение на нагрузочном резисторе. Из-за потенциального барьера, диоды не включаются, пока источник напряжение не достигнет около 0,7 В.

И поскольку в мостовом выпрямителе работают по два диода за раз, то падение напряжения составит 0,7 x 2 = 1,4 В. Таким образом, пиковое выходное напряжение определяется следующим образом:

Выходная частота

Полноволновой выпрямитель инвертирует каждый отрицательный полупериод, удваивая количество положительных полупериодов. Из-за этого у такого выпрямителя на выходе в два раза больше циклов, чем на входе. Поэтому частота полноволнового сигнала в два раза превышает входную частоту.

Например, если частота на входе составляет 50 Гц, выходная частота будет 100 Гц.

Фильтрация постоянного напряжения

Сигнал на выходе, который мы получаем от двухполупериодного мостового выпрямителя, является по сути пульсирующим постоянным напряжением, которое вырастает до максимума, а затем снижается до нуля.

Для того чтобы избавиться от пульсаций, нам необходимо отфильтровать двухволновой сигнал. Один из способов сделать это — подключить сглаживающий конденсатор.

Первоначально конденсатор разряжен. На протяжении первой четверти цикла диоды D1 и D2 смещены в прямом направлении и из-за этого сглаживающий конденсатор начинает заряжаться. Процесс заряда длится до тех пор, пока напряжение с мостового выпрямителя не достигнет своего пикового значения. В этот момент напряжение на конденсаторе будет равно Vp.

После того, как напряжение с выпрямителя достигает своего пика, оно начинает уменьшаться. Как только напряжение снизиться ниже Vp соответствующая пара диодов (D1 и D2) не будет проводить.

Когда диоды выключены, конденсатор разряжается через нагрузку, пока не будет достигнут следующий пик. Когда наступает следующий пик, конденсатор заряжается уже через диоды D3 и D4  до пикового значения.

Недостатки мостового выпрямителя

Единственным недостатком мостового выпрямителя является то, что выходное напряжение меньше, чем входное напряжение на 1,4 В, в результате падения на двух диодах.

Этот недостаток ощутим только в источниках питания с очень низким напряжением. Например, если пиковое напряжение источника составляет всего 5 В, то  напряжение нагрузки будет иметь только 3,6 В.

Но если пиковое напряжение источника составляет 100 В, напряжение нагрузки будет близко к идеальному двухполупериодному напряжению и влияние падения на диодах будет не значительным.

1 комментарий

  • 31.03.2020 at 23:28

    отличная статья! все коротко и ясно! Спасибо за Ваш труд!

    Ответить

Добавить комментарий

Ваш электронный адрес не будет опубликован.


*